71 research outputs found

    Credit assignment in multiple goal embodied visuomotor behavior

    Get PDF
    The intrinsic complexity of the brain can lead one to set aside issues related to its relationships with the body, but the field of embodied cognition emphasizes that understanding brain function at the system level requires one to address the role of the brain-body interface. It has only recently been appreciated that this interface performs huge amounts of computation that does not have to be repeated by the brain, and thus affords the brain great simplifications in its representations. In effect the brain’s abstract states can refer to coded representations of the world created by the body. But even if the brain can communicate with the world through abstractions, the severe speed limitations in its neural circuitry mean that vast amounts of indexing must be performed during development so that appropriate behavioral responses can be rapidly accessed. One way this could happen would be if the brain used a decomposition whereby behavioral primitives could be quickly accessed and combined. This realization motivates our study of independent sensorimotor task solvers, which we call modules, in directing behavior. The issue we focus on herein is how an embodied agent can learn to calibrate such individual visuomotor modules while pursuing multiple goals. The biologically plausible standard for module programming is that of reinforcement given during exploration of the environment. However this formulation contains a substantial issue when sensorimotor modules are used in combination: The credit for their overall performance must be divided amongst them. We show that this problem can be solved and that diverse task combinations are beneficial in learning and not a complication, as usually assumed. Our simulations show that fast algorithms are available that allot credit correctly and are insensitive to measurement noise

    Solving Bongard Problems with a Visual Language and Pragmatic Reasoning

    Full text link
    More than 50 years ago Bongard introduced 100 visual concept learning problems as a testbed for intelligent vision systems. These problems are now known as Bongard problems. Although they are well known in the cognitive science and AI communities only moderate progress has been made towards building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language that allows representing complex visual concepts based on this vocabulary. Using this language and Bayesian inference, complex visual concepts can be induced from the examples that are provided in each Bongard problem. Contrary to other concept learning problems the examples from which concepts are induced are not random in Bongard problems, instead they are carefully chosen to communicate the concept, hence requiring pragmatic reasoning. Taking pragmatic reasoning into account we find good agreement between the concepts with high posterior probability and the solutions formulated by Bongard himself. While this approach is far from solving all Bongard problems, it solves the biggest fraction yet

    Bayesian Classifier Fusion with an Explicit Model of Correlation

    Full text link
    Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.Comment: 12 pages, 4 figures, 1 table, revised title and Fig 2, added real data set Bookies

    Probabilistic inverse optimal control with local linearization for non-linear partially observable systems

    Full text link
    Inverse optimal control methods can be used to characterize behavior in sequential decision-making tasks. Most existing work, however, requires the control signals to be known, or is limited to fully-observable or linear systems. This paper introduces a probabilistic approach to inverse optimal control for stochastic non-linear systems with missing control signals and partial observability that unifies existing approaches. By using an explicit model of the noise characteristics of the sensory and control systems of the agent in conjunction with local linearization techniques, we derive an approximate likelihood for the model parameters, which can be computed within a single forward pass. We evaluate our proposed method on stochastic and partially observable version of classic control tasks, a navigation task, and a manual reaching task. The proposed method has broad applicability, ranging from imitation learning to sensorimotor neuroscience

    Looking for Image Statistics: Active Vision With Avatars in a Naturalistic Virtual Environment

    Get PDF
    The efficient coding hypothesis posits that sensory systems are tuned to the regularities of their natural input. The statistics of natural image databases have been the topic of many studies, which have revealed biases in the distribution of orientations that are related to neural representations as well as behavior in psychophysical tasks. However, commonly used natural image databases contain images taken with a camera with a planar image sensor and limited field of view. Thus, these images do not incorporate the physical properties of the visual system and its active use reflecting body and eye movements. Here, we investigate quantitatively, whether the active use of the visual system influences image statistics across the visual field by simulating visual behaviors in an avatar in a naturalistic virtual environment. Images with a field of view of 120◦ were generated during exploration of a virtual forest environment both for a human and cat avatar. The physical properties of the visual system were taken into account by projecting the images onto idealized retinas according to models of the eyes’ geometrical optics. Crucially, different active gaze behaviors were simulated to obtain image ensembles that allow investigating the consequences of active visual behaviors on the statistics of the input to the visual system. In the central visual field, the statistics of the virtual images matched photographic images regarding their power spectra and a bias in edge orientations toward cardinal directions. At larger eccentricities, the cardinal bias was superimposed with a gradually increasing radial bias. The strength of this effect depends on the active visual behavior and the physical properties of the eye. There were also significant differences between the upper and lower visual field, which became stronger depending on how the environment was actively sampled. Taken together, the results show that quantitatively relating natural image statistics to neural representations and psychophysical behavior requires not only to take the structure of the environment into account, but also the physical properties of the visual system, and its active use in behavior

    Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics

    Get PDF
    While interacting with objects during every-day activities, e.g. when sliding a glass on a counter top, people obtain constant feedback whether they are acting in accordance with physical laws. However, classical research on intuitive physics has revealed that people’s judgements systematically deviate from predictions of Newtonian physics. Recent research has explained at least some of these deviations not as consequence of misconceptions about physics but instead as the consequence of the probabilistic interaction between inevitable perceptual uncertainties and prior beliefs. How intuitive physical reasoning relates to visuomotor actions is much less known. Here, we present an experiment in which participants had to slide pucks under the influence of naturalistic friction in a simulated virtual environment. The puck was controlled by the duration of a button press, which needed to be scaled linearly with the puck’s mass and with the square-root of initial distance to reach a target. Over four phases of the experiment, uncertainties were manipulated by altering the availability of sensory feedback and providing different degrees of knowledge about the physical properties of pucks. A hierarchical Bayesian model of the visuomotor interaction task incorporating perceptual uncertainty and press-time variability found substantial evidence that subjects adjusted their button-presses so that the sliding was in accordance with Newtonian physics. After observing collisions between pucks, which were analyzed with a hierarchical Bayesian model of the perceptual observation task, subjects transferred the relative masses inferred perceptually to adjust subsequent sliding actions. Crucial in the modeling was the inclusion of a cost function, which quantitatively captures participants’ implicit sensitivity to errors due to their motor variability. Taken together, in the present experiment we find evidence that our participants transferred their intuitive physical reasoning to a subsequent visuomotor control task consistent with Newtonian physics and weighed potential outcomes with a cost functions based on their knowledge about their own variability

    Multimodal Uncertainty Reduction for Intention Recognition in Human-Robot Interaction

    Get PDF
    Assistive robots can potentially improve the quality of life and personal independence of elderly people by supporting everyday life activities. To guarantee a safe and intuitive interaction between human and robot, human intentions need to be recognized automatically. As humans communicate their intentions multimodally, the use of multiple modalities for intention recognition may not just increase the robustness against failure of individual modalities but especially reduce the uncertainty about the intention to be recognized. This is desirable as particularly in direct interaction between robots and potentially vulnerable humans a minimal uncertainty about the situation as well as knowledge about this actual uncertainty is necessary. Thus, in contrast to existing methods, in this work a new approach for multimodal intention recognition is introduced that focuses on uncertainty reduction through classifier fusion. For the four considered modalities speech, gestures, gaze directions and scene objects individual intention classifiers are trained, all of which output a probability distribution over all possible intentions. By combining these output distributions using the Bayesian method Independent Opinion Pool [1] the uncertainty about the intention to be recognized can be decreased. The approach is evaluated in a collaborative human-robot interaction task with a 7-DoF robot arm. The results show that fused classifiers, which combine multiple modalities, outperform the respective individual base classifiers with respect to increased accuracy, robustness, and reduced uncertainty

    Catching heuristics are optimal control policies

    Get PDF
    Two seemingly contradictory theories attempt to explain how humans move to intercept an airborne ball. One theory posits that humans predict the ball trajectory to optimally plan future actions; the other claims that, instead of performing such complicated computations, humans employ heuristics to reactively choose appro- priate actions based on immediate visual feedback. In this paper, we show that interception strategies appearing to be heuristics can be understood as computa- tional solutions to the optimal control problem faced by a ball-catching agent acting under uncertainty. Modeling catching as a continuous partially observable Markov decision process and employing stochastic optimal control theory, we discover that the four main heuristics described in the literature are optimal solutions if the catcher has sufficient time to continuously visually track the ball. Specifically, by varying model parameters such as noise, time to ground contact, and perceptual latency, we show that different strategies arise under different circumstances. The catcher’s policy switches between generating reactive and predictive behavior based on the ratio of system to observation noise and the ratio between reaction time and task duration. Thus, we provide a rational account of human ball-catching behavior and a unifying explanation for seemingly contradictory theories of target interception on the basis of stochastic optimal control

    Speaking Multiple Languages Affects the Moral Bias of Language Models

    Full text link
    Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions. We release our code and models.Comment: To appear in ACL Findings 202

    The World as an External Memory: The Price of Saccades in a Sensorimotor Task

    Get PDF
    Theories of embodied cognition postulate that the world can serve as an external memory. This implies that instead of storing visual information in working memory the information may be equally retrieved by appropriate eye movements. Given this assumption, the question arises, how we balance the effort of memorization with the effort of visual sampling our environment. We analyzed eye-tracking data in a sensorimotor task where participants had to produce a copy of a LEGO®-blocks-model displayed on a computer screen. In the unconstrained condition, the model appeared immediately after eye-fixation on the model. In the constrained condition, we introduced a 0.7 s delay before uncovering the model. The model disappeared as soon as participants made a saccade outside of the Model Area. To successfully copy a model of 8 blocks participants made saccades to the Model Area on average 7.9 times in the unconstrained condition and 5.2 times in the constrained condition. However, the mean duration of a trial was 2.9 s (14%) longer in the constrained condition even when taking into account the delayed visibility of the model. In this study, we found evidence for an adaptive shift in subjects’ behavior toward memorization by introducing a price for a certain type of saccades. However, the response is not adaptive; it is maladaptive, as memorization leads to longer overall performance time
    • …
    corecore